Cascade Support Vector Machines with Dimensionality Reduction
نویسندگان
چکیده
منابع مشابه
Dimensionality Reduction via Sparse Support Vector Machines
We describe a methodology for performing variable ranking and selection using support vector machines (SVMs). The method constructs a series of sparse linear SVMs to generate linear models that can generalize well, and uses a subset of nonzero weighted variables found by the linear models to produce a final nonlinear model. The method exploits the fact that a linear SVM (no kernels) with `1-nor...
متن کاملSupport Vector Machines for Visualization and Dimensionality Reduction
Discriminant functions gW(X) calculated by Support Vector Machines (SVMs) define in a computationally efficient way projections of high-dimensional data on a direction perpendicular to the discriminating hyperplane. These projections may be used to estimate and display posterior probability densities p(C|gW(X)). Additional projection directions for visualization and dimensionality reduction are...
متن کاملParallel Support Vector Machines: The Cascade SVM
We describe an algorithm for support vector machines (SVM) that can be parallelized efficiently and scales to very large problems with hundreds of thousands of training vectors. Instead of analyzing the whole training set in one optimization step, the data are split into subsets and optimized separately with multiple SVMs. The partial results are combined and filtered again in a ‘Cascade’ of SV...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملPoint Cloud Reduction Using Support Vector Machines
This paper explores the possibilities of point cloud reduction using insensitive support vector regression (-SVR). -SVR is a technique that can carry out the regression using different kernel functions (sigmoid, radial basis function, B-spline, spline, etc.) and it is suitable for detection of flat regions and regions with high curvature in scanned data. Using -SVR the density of preserv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Computational Intelligence and Soft Computing
سال: 2015
ISSN: 1687-9724,1687-9732
DOI: 10.1155/2015/216132